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Abstract

This work wuses the Adomian modified
decomposition method (AMDM) to analyze the
dynamic behavior of a rotating Euler-Bernoulli
beam subjected to different boundary conditions.
The principal differential equation controlling the
beam's rotation is transformed into a recursive
algebraic equation by using AMDM. The
appropriate mode shapes and dimensionless natural
frequencies may be readily derived concurrently
using the boundary condition equations. Here we
show the calculated outcomes for a variety of
boundary conditions, offset lengths, and rotating
speeds. The reported results of the convergence and
comparison tests guarantee the correctness. An
efficient and precise technique for free vibration
analysis of spinning beams with arbitrary boundary
conditions is shown by the AMDM.

Introduction

The rotating Euler-Bernoulli beams have been the
subject of numerous investigations because they are
widely used in various aeronautical, robotic, and
helicopter blade and wind turbine engineering
fields. The free vibration analysis of rotating beams
has been extensively studied by many researchers
[1-10] with great success. Different numerical or
analysis ~ methods such  as differential
transformation method [1, 2], the Frobenius method
[3], finite element method [4, 5], and dynamic
stiffness method [6] have been used in solving free
vibration problems of such structures. References
in [4, 5] give an exhaustive literature survey on the
free vibration analysis of rotating beams.
References in [11-13] discussed dynamic response
of rotating beams with piezoceramic actuation and
localized damages. No attempt will be made here to
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present a bibliographical account of previous work
in this area. Few selective recent papers [1-10]
which provide further references on the subject are
quoted.

Until now, most of the vibration analysis of
rotating beams has been limited to -classical
boundary conditions (i.e., which are either
clamped, free, simply supported, or sliding). In
practice, however, the characteristics of a test
structure may be very well depart from these
classical boundary conditions. In this paper, a
relatively new computed approach called Adomian
modified decomposition method (AMDM) [14-21]
is used to analyze the free vibration for the rotating
Euler-Bernoulli beams under various boundary
conditions, rotating speeds, and offset lengths. The
AMDM is a useful and powerful method for
solving linear and nonlinear differential equations.
The goal of the AMDM is to find the solution of
linear and nonlinear, ordinary, or partial differential
equation without dependence on any small
parameter like perturbation method. The main
advantages of AMDM are computational simplicity
and do not involve any linearization, discretization,
perturbation, or unjustified assumptions which may
alter the physics of the problems [14]. In AMDM,
the solution is considered as a sum of an infinite
series and rapid convergence to an accurate
solution [15]. Recently, AMDM has been applied
to the problem of vibration of structural and
mechanical systems, and this method has shown
reliable  results in  providing  analytical
approximation that converges rapidly [16-21].

Using the AMDM, the governing differential
equation for the rotating beam becomes a recursive
algebraic equation [14-17]. The boundary
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conditions become simple algebraic frequency
equations suitable for symbolic
computation. Moreover, after simple
algebraic operations on these frequency equations,
we can obtain the natural frequency and
corresponding closed-form series solution ofmode
shape simultaneously. Finally, some numerical
examples are studied to demonstrate the accuracy
and efficiency of the proposed method.
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shape and the natural frequency, respectively.
Substituting (3) into (1), then separating variable
for time t and space x, the ordinary differential
equation for the rotating beam can be obtained:
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Figure 1: A rotating beam elastically restrained at = |
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shown in Figure 1.The partial differential equation ] '-'*L .
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describing the free vibration of a rotating beam is
as follows [1, 2]:

£va

dlw(x,t) dFwixt) d
EI A -
. PTaE T ax

dw (x, 1) — — lst natural frequency

dx Ind natural frequency
=== 3rd natural frequency

== 4th natural frequency
—s+— 5th natural frequency

T (x)

whereE is Young’s modulus, I(x) = bh3 /12 is the

crosssectional moment of inertia of the beam, A =
bh is the crosssectional area, and p is the density of
the beam. (x) is the axial force due to the
centrifugal stiffening and is given by the following:

L
T(x)= I [pAQ (r + x)] dx

= liJ.E,L?l.J*I.!'l'.2 {LE + 2rL — 2rx — xz} ,

where Q is the angular rotating speed of the beam
and r is offset length between beam and rotating
hub. According to modal analysis approach (for
harmonic free vibration), the (x, ) can be separable
in space and time:
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Figure 2:The first five dimensionless natural
frequencies A(n) as the function of the series
summation limit M.

Substituting (2) into (4), then rewriting (4) in
dimensionless form

d'®(X) 2 d'®(X)
T~ 05U (1+2R) —
Lo d d';D(X]J S :i[ 2dd (X)
FURTY [X ax TV i Y T
- Mox) =0,

whereX = x/L, ®(X) = ¢(x)/L, R = r/L, U =

\/pAQZL4/EI is the dimensionless rotating speed
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and A = VpAOw2L4/EI is the dimensionless natural
frequency. According to the AMDM [11-18], ®(X)
in (5) can be expressed as an infinite series:

m{_x} — i mem‘

m=il

Mormalized mode shape

where the wunknown coefficientsCm will be
determined recurrently.

Impose a linear operator G=d4 /dX4 , then the
inverse operator of G is therefore a 4-fold integral

operator defined by the following 0 0.2 04 06 08 1
X
G'= [ J l l (--)dX dX dX dX, — coes Sa] mande
0 --- Ind mode == dth mode
G'GO(X) =0(X)-C,-C, X -C, X" -C,X". (b)
2 :
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X i<)
— lstmode o 3rd mode
--- Ind mode --- dthmode Figure 3: The first four normalized mode shapes for
(@l the (a) clamped-free beam, (b) clamped-clamped
beam, and (c) clamped-simply supported beam
when dimensionless rotating speed U=4 and offset
length R=3.
Applying both sides of (5) with G—1, we get the
following:
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dX dX
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Substituting (6) and (8) into (9), we get the
following:

3
®(X)= ) C,X"

m=0

m+

E 0507 (1+2R) (m+ 1) (m+2)C,,..
m+ 1) (m+2)(m+3)(m+4) .

=0

o 2y 2
(”r + I} u Rc.lrl-r] rrt+i

S (m+ 1) (m+2) (m + 3) (m + 4)

= 0.5U0%m (m+ 1)C

= (m+1)(m+2)(m+3)(m+4)

m i1+l
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N (m+1)(m+2)(m+3(m+4)

Finally, the coefficients Cm in (10) can be
determined by using the following recurrence
relations:

dd (0)
Cy=0(0), C,=——>
0=2(0) PTodx G
o 1 d*(0) _1dO ()
272 dxt G e dxe
_05U*(1+2R)C, ., (m+1)URC,,,

“m+d (”r.'.j} E;n +4}| [fn +2}| [Fﬂ‘l’j} [?n+4}|

{J.SUlanm
(m+2)(m+3)(m+4)

Ac

“rR

+{m+ Dim+2)(m+3)(m+4)

m = .

a1

We may approximate the above solution by the M-
term truncated series, and (6) can be rewritten as
follows:

Page | 142
Index in Cosmos
DEC 2021, Volume 11, ISSUE 4
UGC Approved Journal

M
O(X)= ) C,X".

m=il

Equation (13) implies that Yoo m=M+1 CmXm is
The number of the series
summation limit M is determined by convergence
requirement in practice.

negligibly small.

From the above analysis, it can be found that there
are five unknown parameters (€O, C1, C2, C3, and
A) for the free vibration analysis of the rotating
beam. These unknown parameters can be
determined by using the boundary condition
equations of the beam, and then the natural
frequencies and corresponding mode shapes for the
rotating beams can be obtained.

Results and Discussion

In order to verify the proposed method to analyze
the free vibration of the rotating beam shown in
Figure 1, several numerical examples will be
discussed in this section.

As mentioned earlier, the closed-form series
solutions of mode shape functions in (13) will have
to be truncated in numerical calculations. It is
important to check how rapidly the dimensionless
natural frequencies (1) computed
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Tanee 2: The first five dimensionless natural frequencies A{n) for a clamped-clamped beam with different dimensionle

and offset lengths R.

ROU Method Mode index n
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through AMDM converge toward the exact value
as the series summation limit M is increased. To
examine the convergence of the solution, a
clamped-free beam with dimensionless rotating
speed U=4 and dimensionless offset length R=3 is
considered. In this study, the classical boundary
conditions (such as clamped, simply supported, and
free) can be considered as the special cases of (14)
and (15). For example, the clamped boundary
condition is obtained by setting the stiffness of the
translational and rotational springs to be extremely
large (which is represented by a very large number,
1x109 , in this paper). Similarly, for simply
supported boundary condition, the stiffness of the
translational and rotational springs is set to 1 x 109
and 0, respectively. For free boundary condition,
the stiffness of the translational and rotational
springs is set to 0. Figure 2 shows the first five
dimensionless natural frequencies (n) as the
function of the series summation limit M. Clearly,
the (n) converges very quickly as the series
summation limit M is increased. The excellent
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numerical stability of the solution can also be found
in Figure 2.

For brief, the series summation limit M in (13) will
be simply truncated to M = 60 in all the subsequent
calculations. The dimensionless natural frequencies
(n) are kept accurate to the sixth decimal place for
comparison purpose. Tables 1, 2, and 3 list the first
five dimensionless natural frequencies (n) of the
beam under various dimensionless rotating speeds
U and offset lengths R for clamped-free, clamped-
clamped, and clamped-simply supported boundary
conditions, respectively. Those calculated results
are compared with those listed in [1, 3, 4], and
excellent agreement is found. Figure 3 shows the
first four normalized mode shapes for different
boundary conditions when dimensionless rotating
speed U=4 and offset length R=3.

Figures 4 and 5 show the first five dimensionless
natural frequency ratios (n)/A0(n) for the clamped-
free beam as the functions of the dimensionless
rotating speed U and offset length R, where A0(n)
is the corresponding dimensionless natural
frequencies when U=0 (nonrotating beam). From
Figures 4 and 5, it can be found that the natural
frequencies’ ratios increase when the rotating speed
or offset length increases for both beams. However,
the variations on the natural frequency ratios of the
low order modes are more sensitive to the rotating
speed or offset length.

Next, the beams with general boundary conditions
are discussed. Because the proposed method based
on AMDM technique offers
systematic procedure for

a unified and
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Tane 3: The frst five dimensionless natural frequencies M) for a camped simply supported beam with different dis

speeds U and offset lengths B
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" Present 16861201 SLATTT9R 106475988 180608162
13 I6.8612 L9778 1064760
1 Present 15.630431 50276757 104591434 178.6304%6
|3 156504 502768 104.5814
. Present 16.324030 SLI%8T54 05614686 179.7076%)
. 3 16,340 51198 103647
4 Present 18739775 54.700871 109594247 183.942227
[ 18,7398 54,7009 1095943
1 Prezent 5786476 50459230 104.793819 178843781
|3 15,7865 50.4592 104.7938
. . Present 16 834508 51908185 106412044 180552930
) B ] 16,8349 51908 1064120
4 Present N4l 51264050 1606262 7205776
|3 10,4130 571641 1124063
1 Present 15921044 50640893 104995728 179.0567%4
(3 159211 5540 104.9957
; ) Present 17.327845 51605504 107202150 181395382
L] 173179 516058 7
4 Present 11932288 59.690141 115520706 190.396603
|3 p Rk 1 596000 115357

vibration analysis, the modification of boundary
conditions from one case to another is as simple as
changing the values of the stiffness of translational
and rotational springs. And it does not involve any
changes to the solution procedures or algorithms.

Table 4 lists the first five dimensionless natural
frequency (n) for the beam with different
dimensionless rotating speeds U and different
rotational springs KL1 and KR1 when the
translational springs KLO = KRO =1 x 109 and the
dimensionless offset length R=3. From Table 4, it
is found that the natural frequencies increase when
the offset length or rotating speed increases, as
expected. Figure 6 shows the first four normalized
mode shapes of the rotating beam listed in Table 4.
From Figure 6, it can be found that the
discrepancies of the mode shapes under different
rotating speeds are very small. However, the
natural frequencies are quite different, as shown in
Table 4.

Based on the developments achieved and results
obtained in this paper, the following remarks can
be made.
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(1) The essential steps of the AMDM application
includes transforming the governing differential
equation for the rotating beam into algebraic
equation; by using the boundary condition
equations, any desired dimensionless natural
frequencies and corresponding mode shapes can be
easily obtained simultaneously.

(2) All the steps of the AMDM are very
straightforward, and the application of the AMDM
to both equations of motion and the boundary
conditions seems to be very involved
computationally. However, all the algebraic
calculations are finished quickly using symbolic
computational software (such as MATLAB).
Besides all these, the analysis of the convergence
of the results shows that AMDM solutions
converge fast. The results of the AMDM are found
in excellent agreement with available published
results.

Conclusions

In this paper, free vibrations of the uniform
rotating Euler-Bernoulli beams under different
boundary conditions are analyzed using Adomian
modified decomposition method (AMDM). The
advantages of the AMDM are its fast convergence
of the solution and its high degree of accuracy.
Natural frequencies and corresponding mode
shapes  with boundary  conditions,
dimensionless offset length, and dimensionless
rotating speed are presented.

various

T The first vedimensionlssnatural requences () for thebeam wth ifenent dimensioness offsetlengths R and rtetional spring
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Furthermore, the natural frequencies obtained by
using AMDM are in excellent agreement with
published results.

It should be noted that the proposed method can be
used to analyze the vibration of the rotating beams
under arbitrary boundary conditions. The vibration
analysis for different boundary conditions and/or
rotating speed is as simple as changing the value of
corresponding parameters and does not involve any
changes to the solution procedures or algorithms.

The results in this paper show that the AMDM
technique is reliable, powerful, and promising for
solving free vibration problems for rotating beams.
The author believes that the AMDM can further be
applied to the Timoshenko rotating beam problems
and also it can be used as an alternative to other
solution techniques such as finite element method,
differential quadrature method, and Frobenius
method.
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