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Abstract 
This work uses the Adomian modified 

decomposition method (AMDM) to analyze the 

dynamic behavior of a rotating Euler-Bernoulli 

beam subjected to different boundary conditions. 

The principal differential equation controlling the 

beam's rotation is transformed into a recursive 

algebraic equation by using AMDM. The 

appropriate mode shapes and dimensionless natural 

frequencies may be readily derived concurrently 

using the boundary condition equations. Here we 

show the calculated outcomes for a variety of 

boundary conditions, offset lengths, and rotating 

speeds. The reported results of the convergence and 

comparison tests guarantee the correctness. An 

efficient and precise technique for free vibration 

analysis of spinning beams with arbitrary boundary 

conditions is shown by the AMDM. 

Introduction  

The rotating Euler-Bernoulli beams have been the 

subject of numerous investigations because they are 

widely used in various aeronautical, robotic, and 

helicopter blade and wind turbine engineering 

fields. The free vibration analysis of rotating beams 

has been extensively studied by many researchers 

[1–10] with great success. Different numerical or 

analysis methods such as differential 

transformation method [1, 2], the Frobenius method 

[3], finite element method [4, 5], and dynamic 

stiffness method [6] have been used in solving free 

vibration problems of such structures. References 

in [4, 5] give an exhaustive literature survey on the 

free vibration analysis of rotating beams. 

References in [11–13] discussed dynamic response 

of rotating beams with piezoceramic actuation and 

localized damages. No attempt will be made here to 

present a bibliographical account of previous work 

in this area. Few selective recent papers [1–10] 

which provide further references on the subject are 

quoted.  

Until now, most of the vibration analysis of 

rotating beams has been limited to classical 

boundary conditions (i.e., which are either 

clamped, free, simply supported, or sliding). In 

practice, however, the characteristics of a test 

structure may be very well depart from these 

classical boundary conditions. In this paper, a 

relatively new computed approach called Adomian 

modified decomposition method (AMDM) [14–21] 

is used to analyze the free vibration for the rotating 

Euler-Bernoulli beams under various boundary 

conditions, rotating speeds, and offset lengths. The 

AMDM is a useful and powerful method for 

solving linear and nonlinear differential equations. 

The goal of the AMDM is to find the solution of 

linear and nonlinear, ordinary, or partial differential 

equation without dependence on any small 

parameter like perturbation method. The main 

advantages of AMDM are computational simplicity 

and do not involve any linearization, discretization, 

perturbation, or unjustified assumptions which may 

alter the physics of the problems [14]. In AMDM, 

the solution is considered as a sum of an infinite 

series and rapid convergence to an accurate 

solution [15]. Recently, AMDM has been applied 

to the problem of vibration of structural and 

mechanical systems, and this method has shown 

reliable results in providing analytical 

approximation that converges rapidly [16–21].  

Using the AMDM, the governing differential 

equation for the rotating beam becomes a recursive 

algebraic equation [14–17]. The boundary 
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conditions become simple algebraic frequency 

equations which are suitable for symbolic 

computation. Moreover, after some simple 

algebraic operations on these frequency equations, 

we can obtain the natural frequency and 

corresponding closed-form series solution ofmode 

shape simultaneously. Finally, some numerical 

examples are studied to demonstrate the accuracy 

and efficiency of the proposed method. 

 

Figure 1: A rotating beam elastically restrained at 

both ends. 

. AMDM for the Rotating Beams Consider the free 

vibration of a rotating Euler-Bernoulli beam with 

length 𝐿, constant thickness ℎ, and width 𝑏, as 

shown in Figure 1.The partial differential equation 

describing the free vibration of a rotating beam is 

as follows [1, 2]: 

 

where𝐸 is Young’s modulus, 𝐼(𝑥) = 𝑏ℎ3 /12 is the 

crosssectional moment of inertia of the beam, 𝐴 = 

𝑏ℎ is the crosssectional area, and 𝜌 is the density of 

the beam. (𝑥) is the axial force due to the 

centrifugal stiffening and is given by the following: 

 

where Ω is the angular rotating speed of the beam 

and 𝑟 is offset length between beam and rotating 

hub. According to modal analysis approach (for 

harmonic free vibration), the (𝑥, ) can be separable 

in space and time: 

 

where𝑖 = √−1, (𝑥) and 𝜔 are the structural mode 

shape and the natural frequency, respectively. 

Substituting (3) into (1), then separating variable 

for time 𝑡 and space 𝑥, the ordinary differential 

equation for the rotating beam can be obtained: 

 

 

 

Figure 2:The first five dimensionless natural 

frequencies 𝜆(𝑛) as the function of the series 

summation limit 𝑀. 

Substituting (2) into (4), then rewriting (4) in 

dimensionless form 

 

where𝑋 = 𝑥/𝐿, Φ(𝑋) = 𝜙(𝑥)/𝐿, 𝑅 = 𝑟/𝐿, 𝑈 = 

√𝜌𝐴Ω2𝐿4/𝐸𝐼 is the dimensionless rotating speed 
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and 𝜆 = √𝜌𝐴0𝜔2𝐿4/𝐸𝐼 is the dimensionless natural 

frequency. According to the AMDM [11–18], Φ(𝑋) 

in (5) can be expressed as an infinite series: 

 

where the unknown coefficients𝐶𝑚 will be 

determined recurrently.  

Impose a linear operator 𝐺=𝑑4 /𝑑𝑋4 , then the 

inverse operator of 𝐺 is therefore a 4-fold integral 

operator defined by the following 

 

 

 

 

Figure 3: The first four normalized mode shapes for 

the (a) clamped-free beam, (b) clamped-clamped 

beam, and (c) clamped-simply supported beam 

when dimensionless rotating speed 𝑈=4 and offset 

length 𝑅=3. 

Applying both sides of (5) with 𝐺−1, we get the 

following: 
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Substituting (6) and (8) into (9), we get the 

following: 

 

 

Finally, the coefficients 𝐶𝑚 in (10) can be 

determined by using the following recurrence 

relations: 

 

We may approximate the above solution by the 𝑀-

term truncated series, and (6) can be rewritten as 

follows: 

`  

Equation (13) implies that ∑∞ 𝑚=𝑀+1 𝐶𝑚𝑋𝑚 is 

negligibly small. The number of the series 

summation limit 𝑀 is determined by convergence 

requirement in practice. 

 From the above analysis, it can be found that there 

are five unknown parameters (𝐶0, 𝐶1, 𝐶2, 𝐶3, and 

𝜆) for the free vibration analysis of the rotating 

beam. These unknown parameters can be 

determined by using the boundary condition 

equations of the beam, and then the natural 

frequencies and corresponding mode shapes for the 

rotating beams can be obtained. 

Results and Discussion 

In order to verify the proposed method to analyze 

the free vibration of the rotating beam shown in 

Figure 1, several numerical examples will be 

discussed in this section. 

 As mentioned earlier, the closed-form series 

solutions of mode shape functions in (13) will have 

to be truncated in numerical calculations. It is 

important to check how rapidly the dimensionless 

natural frequencies (𝑛) computed 
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through AMDM converge toward the exact value 

as the series summation limit 𝑀 is increased. To 

examine the convergence of the solution, a 

clamped-free beam with dimensionless rotating 

speed 𝑈=4 and dimensionless offset length 𝑅=3 is 

considered. In this study, the classical boundary 

conditions (such as clamped, simply supported, and 

free) can be considered as the special cases of (14) 

and (15). For example, the clamped boundary 

condition is obtained by setting the stiffness of the 

translational and rotational springs to be extremely 

large (which is represented by a very large number, 

1×109 , in this paper). Similarly, for simply 

supported boundary condition, the stiffness of the 

translational and rotational springs is set to 1 × 109 

and 0, respectively. For free boundary condition, 

the stiffness of the translational and rotational 

springs is set to 0. Figure 2 shows the first five 

dimensionless natural frequencies (𝑛) as the 

function of the series summation limit 𝑀. Clearly, 

the (𝑛) converges very quickly as the series 

summation limit 𝑀 is increased. The excellent 

numerical stability of the solution can also be found 

in Figure 2.  

For brief, the series summation limit 𝑀 in (13) will 

be simply truncated to 𝑀 = 60 in all the subsequent 

calculations. The dimensionless natural frequencies 

(𝑛) are kept accurate to the sixth decimal place for 

comparison purpose. Tables 1, 2, and 3 list the first 

five dimensionless natural frequencies (𝑛) of the 

beam under various dimensionless rotating speeds 

𝑈 and offset lengths 𝑅 for clamped-free, clamped-

clamped, and clamped-simply supported boundary 

conditions, respectively. Those calculated results 

are compared with those listed in [1, 3, 4], and 

excellent agreement is found. Figure 3 shows the 

first four normalized mode shapes for different 

boundary conditions when dimensionless rotating 

speed 𝑈=4 and offset length 𝑅=3.  

Figures 4 and 5 show the first five dimensionless 

natural frequency ratios (𝑛)/𝜆0(𝑛) for the clamped-

free beam as the functions of the dimensionless 

rotating speed 𝑈 and offset length 𝑅, where 𝜆0(𝑛) 

is the corresponding dimensionless natural 

frequencies when 𝑈=0 (nonrotating beam). From 

Figures 4 and 5, it can be found that the natural 

frequencies’ ratios increase when the rotating speed 

or offset length increases for both beams. However, 

the variations on the natural frequency ratios of the 

low order modes are more sensitive to the rotating 

speed or offset length. 

 Next, the beams with general boundary conditions 

are discussed. Because the proposed method based 

on AMDM technique offers a unified and 

systematic procedure for 
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vibration analysis, the modification of boundary 

conditions from one case to another is as simple as 

changing the values of the stiffness of translational 

and rotational springs. And it does not involve any 

changes to the solution procedures or algorithms. 

 Table 4 lists the first five dimensionless natural 

frequency (𝑛) for the beam with different 

dimensionless rotating speeds 𝑈 and different 

rotational springs 𝐾𝐿1 and 𝐾𝑅1 when the 

translational springs 𝐾𝐿0 = 𝐾𝑅0 = 1 × 109 and the 

dimensionless offset length 𝑅=3. From Table 4, it 

is found that the natural frequencies increase when 

the offset length or rotating speed increases, as 

expected. Figure 6 shows the first four normalized 

mode shapes of the rotating beam listed in Table 4. 

From Figure 6, it can be found that the 

discrepancies of the mode shapes under different 

rotating speeds are very small. However, the 

natural frequencies are quite different, as shown in 

Table 4. 

 Based on the developments achieved and results 

obtained in this paper, the following remarks can 

be made.  

(1) The essential steps of the AMDM application 

includes transforming the governing differential 

equation for the rotating beam into algebraic 

equation; by using the boundary condition 

equations, any desired dimensionless natural 

frequencies and corresponding mode shapes can be 

easily obtained simultaneously.  

(2) All the steps of the AMDM are very 

straightforward, and the application of the AMDM 

to both equations of motion and the boundary 

conditions seems to be very involved 

computationally. However, all the algebraic 

calculations are finished quickly using symbolic 

computational software (such as MATLAB). 

Besides all these, the analysis of the convergence 

of the results shows that AMDM solutions 

converge fast. The results of the AMDM are found 

in excellent agreement with available published 

results. 

Conclusions 

 In this paper, free vibrations of the uniform 

rotating Euler-Bernoulli beams under different 

boundary conditions are analyzed using Adomian 

modified decomposition method (AMDM). The 

advantages of the AMDM are its fast convergence 

of the solution and its high degree of accuracy. 

Natural frequencies and corresponding mode 

shapes with various boundary conditions, 

dimensionless offset length, and dimensionless 

rotating speed are presented. 
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Furthermore, the natural frequencies obtained by 

using AMDM are in excellent agreement with 

published results.  

It should be noted that the proposed method can be 

used to analyze the vibration of the rotating beams 

under arbitrary boundary conditions. The vibration 

analysis for different boundary conditions and/or 

rotating speed is as simple as changing the value of 

corresponding parameters and does not involve any 

changes to the solution procedures or algorithms.  

The results in this paper show that the AMDM 

technique is reliable, powerful, and promising for 

solving free vibration problems for rotating beams. 

The author believes that the AMDM can further be 

applied to the Timoshenko rotating beam problems 

and also it can be used as an alternative to other 

solution techniques such as finite element method, 

differential quadrature method, and Frobenius 

method. 
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